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Abstract—High-performance computing (HPC) systems pro-
vide huge computational resources and large memories. The
hybrid memory is a promising memory technology that contains
different types of memory devices, which have different charac-
teristics regarding access time, retention time, and capacity. How-
ever, the increasing performance and employing hybrid memories
induce more complexity as well. In this paper, we propose a data
migration methodology called HyDM to effectively use hybrid
memories targeting at Intel Knight Landing (KNL) processor.
HyDM monitors status of applications running on a system and
migrates pages of selected applications to the High Bandwidth
Memory (HBM). To select appropriate applications on system
runtime, we adopt the roofline performance model, a visually
intuitive method. HyDM also employs a feedback mechanism to
change the target application dynamically. Experimental results
show that our HyDM improves over the baseline execution the
execution time by up to 22%.

Index Terms—performance, data migration, roofline model

I. INTRODUCTION

With the ever-shrinking feature size in the CMOS process
technology and increasing performance demands, modern pro-
cessors typically integrate multiple cores and the number of
cores in the same chip area has grown significantly. Continu-
ous technology scaling realizes a many-core processor with
hundreds of cores on a single chip [1]–[3]. These trends
necessitate larger DRAMs to accommodate more and bigger
programs in the main memory. DRAMs have been popularly
used to implement the main memory because of their high den-
sities and low prices. Due to the scaling limitation of DRAMs
and the high bandwidth demands, hybrid storage architectures,
which contain heterogeneous memories, are likely to be the
future memory systems in high-performance computing (HPC)
systems [4]–[7].

Knights Landing (KNL) is the code name for the second-
generation Intel Xeon Phi product family [1], [8]. The KNL
processor contains tens of cores and it provides the HBM
3D-stacked memory as a Muti-Channel DRAM (MCDRAM).
DRAM and MCDRAM differ significantly in terms of access
time, bandwidth and capacity. Because of those differences
between DRAM and MCDRAM, performance will vary de-
pending on the application characteristics and the usage of
memory resources.

The switch to multi/many-core processors and hybrid mem-
ories means that microprocessors will become more diverse.

The growing complexity in HPC environments makes diffi-
cult for users to determine the performance of applications
quantitatively. The roofline performance model is a sim-
ple and visual model that offers insights for performance
analysis [9]. To evaluate performance, the roofline model
ties floating-point performance (GFlops/second), arithmetic
intensity (Flops/Byte), and memory bandwidth (GB/second)
together. The peak floating-point performance and the peak
memory bandwidth represent the attainable performance on a
system and the arithmetic intensity shows a ratio of computa-
tions to memory accesses.

In this paper, we propose a data migration strategy for
hybrid memories (HyDM). HyDM periodically monitors the
application’s execution status and it selects appropriate appli-
cations, which require more memory bandwidth. By migrating
pages of the applications to the high bandwidth memory
(i.e. MCDRAM), HyDM improves the memory usages on
hybrid memories. In order to trace performance changes of
applications during their executions, HyDM employs a feed-
back mechanism to change target applications dynamically.
Our experimental results demonstrate that HyDM significantly
improves the performance of mixed application sets on Intel
KNL processor. HyDM enhances performance by up to 22%
compared to the baseline execution time.

The rest of this paper is organized as follows. We provide
background in the next section. Section III presents our
proposed data migration strategy using the roofline model.
Experimental results are given in Section IV. Section V
presents related prior works. Section VI concludes this paper.

II. BACKGROUND

A. Intel Knight Landing (KNL) Processor

In this section, we briefly summarize the main features of
the Intel KNL processor, especially we focus on its memory
system.

Fig. 1 illustrates the KNL processor and its connection to
the hybrid memories. The KNL processor integrates up to 72
cores together with eight Multi-Channel DRAM (MCDRAM)
memories, which support 16GB of memory and they provide
the peak bandwidth of 400GB/second. The processor also
integrates six DDR4 channels supporting up to 384GB of
memory with the peak bandwidth of 100GB/second. The



Fig. 1. A structure of Intel Knight Landing processor

Fig. 2. Roofline performance model

MCDRAMs are positioned on-chip while DRAMs are off-
chip. Fig. 1 shows 36 tiles in the KNL processor and each
tile consists of the two cores sharing 1MB L2 cache. Tiles are
connected through a 2D-mesh network on-chip and they can
be clustered in several NUMA configurations. In this paper,
we only use the Quadrant cluster configuration where the tiles
are partitioned in four quadrants as it reduces the latency of
L2 cache misses because the worst-case path is shorter. This
configuration is the one recommended by Intel as a symmetric
multi-processor [10]. MCDRAM can be configured at boot
time in three modes: cache, flat or hybrid mode. The Flat
mode configures MCDRAMs to the same address space with
DRAMs, Cache mode configures MCDRAMs as a last-level
cache. The Hybrid mode separates MCDRAMs as two parts
and one is used for an additional addressable memory with
DRAMs and another is used for a last-level cache. In this
work, we consider the Flat mode. For more details on KNL
processor can be found in [1], [11].

Fig. 3. HyDM Methodology Overview

B. Roofline Performance Model

The roofline performance model is a visually intuitive
method used to bound the performance of floating-point pro-
grams running on multi/many-core processors [9]. Rather than
simply using percent-of-peak estimates, the model can be used
to evaluate the quality of attainable performance including
locality, bandwidth, and computational throughput.

Fig. 2 shows the roofline model of Intel KNL processor
with NAS parallel benchmark suites [12]. We periodically
record the position of each benchmark to see performance
changes of each benchmark over time. Detailed experimental
methodologies will be shown in Section IV-A. The black-
colored lines show the peak performance of KNL processor
with DRAM, MCDRAM, and floating-point units, respec-
tively. The x-axis shows the arithmetic intensity that is the ratio
of total floating-point operations to total data movement. The
y-axis represents performance that is the number of floating-
point operations completed by the cores. As shown in Fig.
2, most benchmarks are changing their positions over time
and they are located under the memory-bound area with small
arithmetic intensities. Arithmetic intensity with a small number
means there are more memory requests, and the opposite case
means more computations. Thus, one of the straightforward
approaches to enhance the performance is moving data of the
applications, which require more memory bandwidth, to the
high bandwidth memory.

III. PROPOSED TECHNIQUES

In this section, we introduce a data migration methodology
for hybrid memories called HyDM.

A. Overview

Fig. 3 shows an overview of HyDM method. HyDM em-
ploys three stages to enhance the performance of applications
on the KNL processor. We first monitor the applications during
system runtime using hardware monitoring tools. Then, based
on the historical data, we select a candidate application, which
requires more memory bandwidth, using the roofline model.
Next, we migrate data stored in both MCDRAM and DRAM



Algorithm 1 HyDMAlgorithm (p)
Input: p← time window period
/*
L : the list of running application
W : the list of windows for monitoring data
b : the selected application id
*/
initiate L
while length(L) > 0 do

wait p
1. L← getCurrentApplication()
2. Monitoring(L,W )
3. b← Selection(L,W )
4. Migration(b, L,W )

end while

Algorithm 2 Monitoring(L,W )

Input: L← the list of running application
W ← the list of windows for monitoring data

/*
M : the list of monitoring data for applications
i : the index of application
*/
for i← L0 to length(L) do

1. Mi ← getMonitoringData(i)
2. /* Mi.fp : # of floating point operations */
3. /* Mi.pref : # of page references */
4. /* Mi.pf : # of page faults */

end for
5. insert M to W0

dynamically. By managing application data on MCDRAM and
DRAM, HyDM effectively uses hybrid memories.

Algorithm 1 shows the implementation of HyDM. If running
applications exist, HyDM makes the list of running application
L (line 1). L stores unique PIDs for each application. The three
stages of HyDM are repeatedly performed in a time window
p. At each time point, historical monitored data from each
application are stored in the list W = {W0,W1, ...,Wn} (line
2). Note that W0 is the current time window and the time
window W1 is the previous time window. Wn represents the
n-th previous window. After the Selection procedure with the
lists L and W , HyDM returns the candidate application b for
migration (line 3). The pages of selected application b are
migrated by the Migration procedure (line 4). We present the
details of our method in the following subsections.

B. Monitoring

During the system runs, HyDM monitors applications using
hardware monitoring tools. Most processors now include hard-
ware support for performance monitoring such as perf event
[13] and LIKWID [14]. In this paper, we use perf event. In
Algorithm 2, the inputs include the list of running application
L and the list of windows for monitoring data W . Let M
denote the list of monitored data for running applications in

Algorithm 3 Selection(L,W )

Input: L← the list of running application
W ← the list of windows for monitoring data

Output: b← the selected application id
/*
S : the sorted list of applications
V : the miss predicted list of applications
i : the index of applications
pfavg : the averaged page faults
*/
1. S ← regressionAndSort(W )
2. pfavg ← getAvgPageFault(W0)
for i← 0 to length(S) do

3. if Si in V then continue
4. if Si.pf > pfavg then continue
5. b← getAppId(Si, L)
6. return b

end for

the current time window. Let Mi denote the ith application.
The Monitoring procedure collects the number of floating-
point operations (Mi.fp), page references (Mi.pref ) and
page faults (Mi.pf ), and it stores those values into the entry
corresponding to each type in Mi (line 1-4). Mi.fp and
Mi.pref will be used to compute the arithmetic intensity of
each application. The for loop stops when i is equal to the size
of length(L). Then, M is inserted to the W0 to prepare the
next stage (line 5). Because HyDM only stores a few types of
monitoring data, the storage overhead is very small compared
to the total memory.

C. Selection

Algorithm 3 shows the Selection procedure that chooses an
application as a candidate for migration. In order to select an
application, which requires more memory bandwidth, HyDM
uses the roofline model. When the execution status of appli-
cations is mapped to the roofline model, HyDM chooses an
application with the lowest arithmetic intensity in the memory-
bound area. The strategy in HyDM is to give more chances
to the application that shows the highest ratio of memory
references to computations.

The regressionAndSort procedure first computes the arith-
metic intensity of each application using historical floating-
point operations and page references stored in W (i.g.
Wtime.appid.fp and Wtime.appid.pref ). After that, we perform
the linear regression to predict the next arithmetic intensity
value for each application. Finally, the application list (S)
are sorted in ascending order according to the next arithmetic
intensity values (line 1). Since all candidate applications are
sorted in the list S, the first application of the list is considered
for migration. We first check that the candidate application has
a historical record of miss prediction (V ). The list V generated
in Migration procedure stores applications that did not show
performance improvement after migration (line 3). In order to
filter applications with low memory locality, HyDM employs



Algorithm 4 Migration(b, L,W )

Input: b← the selected application id
L← the list of running application
W ← the list of windows for monitoring data

/*
V : the list of miss predicted applications
r : the index of application for rollback
t : the threshold ratio of MCDRAM use
*/
if isMigrationPossible(t, b) then

1. migrationToMCDRAM(b,W )
else

2. r ← checkF lops(W )
3. if r exists then
4. insert r to V
5. migrationToDRAM(r,W )
6. end if

end if

a simple technique using a number of page faults monitored
in the Monitoring procedure. HyDM compares the number
of page faults from the first application with the averaged
number of page faults (line 4). If all operations are finished,
the Selection procedure returns the candidate application b for
migration (line 6).

D. Migration

Algorithm 4 shows the Migration procedure. Because of
the limited capacity of MCDRAM (16GB), we identify the
possibility before performing the data migration. We check
that the total memory usage, including the current memory
usage of the selected application, does not exceed the threshold
parameter t (e.g. 90%). If the usage of MCDRAM is less
than t, the entire page of the selected application is migrated
to MCDRAM (line 1). Although we migrate the entire page
to maintain the simplicity of the HyDM, the page grouping
techniques for selecting the critical pages of the entire page
in the application are applicable to our proposed scheme [15],
[16].

When the usage of MCDRAM is larger than t, we check
the changes in flops for applications, which have migrated
to MCDRAM (line 2). If the flops of an application have
improved at least once during the time windows compared
to the previous flops, we give more chances to the application
to be in MCDRAM. Since migrating pages frequently induces
additional overheads in terms of performance and energy, we
employ a strict methodology for rollback. If we found the
application that flops does not change, the checkFlops returns
the application id r. After that, the application is inserted to
the list V to record the miss prediction and pages of the
application are migrated to the DRAM again (line 3-6). By
employing the feedback mechanism above, HyDM effectively
uses hybrid memories when many applications are running on
a system.

IV. EXPERIMENTAL RESULTS

In this section, we present the methodologies for evaluations
and their results with discussion.

A. Methodology

The experimental system is equipped with the Intel Xeon
Phi(TM) CPU 7250@1.40GHz, 68 cores per socket, 4 threads
per core, and a total of 272 threads available with the
hyper-threading technology. The system includes 96GB DDR4
(DRAM) and 16GB HBM (MCDRAM).

We evaluated NAS Parallel Benchmark (NPB) related to
computational fluid dynamics [12]. The NPB consists of five
kernel benchmarks (IS, EP, CG, MG, FT) and three pseudo
benchmarks (BT, SP, LU). For all experiments, we used stan-
dard test problems (CLASS-C). Table I shows the benchmark
execution results when they are run on the system alone
including averaged execution times (twenty times), floating-
point operations, memory accesses, and the amount of peak
memory use, respectively.

Table II shows the design parameters of HyDM and their
values set in evaluations. The minimum time unit that can be
monitored through perf event is 1ms. When hardware events
for monitoring are executed frequently, however, performance
degradation occurs. We adjusted the numerical values without
affecting performance through a heuristic method. To assume
the system situation in which applications that require much
larger capacity than the capacity of the MCDRAM are running,
we perform the NPB programs in the number of multiples.

B. Performance Evaluation

Fig. 4 shows the changes in the roofline model when we
run 16 NPB programs in parallel. We have selected several
programs due to page limitation. On the roofline model, we

TABLE I
NAS PARALLEL BENCHMARK (NPB) CHARACTERISTICS

Name
Average
execution
time (sec.)

FP
operations
(GFlop)

Memory
accesses
(read/write)
(mil.)

Peak
memory
use(MB)

IS.C 31 23 758 / 338 1,572
EP.C 462 494 2,739 / 1,028 20
CG.C 319 261 31,174 / 810 1,102
MG.C 129 213 7,507 / 2,940 3,536
FT.C 335 837 18,555 / 10,197 7,188
BT.C 920 2,560 45,682 / 17,270 1,676
SP.C 626 1,918 92,526 / 47,727 1,416
LU.C 733 2,504 84,716 / 38,302 760

TABLE II
HYDM PARAMETERS

Descriptions Values
The time window period: p 100 (ms)

The number of applications: length(L) 16, 32
Size of monitoring windows: W ={W0,W1, ...,Wn} 5, 10

The threshold ratio of MCDRAM use: t 90 (%)



Fig. 4. Roofline performance models

Fig. 5. Averaged execution time results

can see that HyDM works effectively through the rise of the
overall flops values.

To evaluate the performance impact of the proposed HyDM,
we randomly assigned programs to the cores and calculated the
average execution times. Fig. 5 show the averaged execution
times for 100 runs. The results are normalized to the baseline.
Several benchmarks show large increases in the execution
time such as CG.0(15%), CG.1(22%), and FT.1(10%). On
average, the reduced execution time is 6.5% with HyDM.
This performance improvement of HyDM is due to memory-
intensive applications are effectively migrated to MCDRAM.

V. RELATED WORK

There are some categories of works that are closely related
to this paper.

Hybrid memories: Many memory devices have been devel-
oped for decades to replace DRAM, which has fast but non-
volatile characteristics [17], [18]. PRAM is easier to integrate
than DRAM, but the number of writable times per cell is lim-
ited thus memory life is short. STT-RAM has a fast write speed
and good write durability, but it is relatively hard to integrate,
and therefore, there is less need to replace DRAM in terms
of economy. When examining the new memory technology
to date, it is difficult to pursue universal memory, and it is
judged to be a non-volatile technology that lacks performance
rather than DRAM. To use those memories, many researches
have been done on hybrid memories in the form of DRAM
and other types of memories together. One of the hybrid

memory systems uses DRAM as a cache and PRAM as a main
memory [19], [20]. They mitigate the durability of PRAM
and write delay by filtering the write operations to the main
memory using the DRAM cache. In [21], DRAM and PRAM
are located at the same level. In order to compensate for the
delay in the write operation and the lifetime of the PRAM, a
page manager selectively allocates pages among PRAM and
DRAM. All of the above techniques are designed to reduce
write activities in PRAM, however, this paper addresses the
usage of HBM with DRAM.

GPU is the most commonly used hybrid memory to date in
HPC [22]. GPU employs GDDR as high-speed memory and
relatively slow DRAM as main memory. By storing critical
data using prefetch techniques in GDDR, GPU supports fast
operation. The GPU operates as an accelerator with respect
to DRAM. By comparison, our research explores general
processors for HPC environments.

Roofline performance model: The roofline model is used
in a number of scientific applications to analyze bottlenecks in
the performance of an architecture and to guide software opti-
mizations [9]. Various types of roofline models are proposed in
previous works [6], [23]–[25]. In [23], energy version of the
roofline model is proposed to show bounds on performance
due to energy limitations. This model focuses on identifying
the balance between performance and energy in architectural
design. In [24], the roofline model is extended to support the
cache hierarchy. Recently, the roofline model is extended for
specific applications and platforms such as GPUs [6].



Page Migration: A variety of page migration methods
using NUMA nodes have been studied [26]–[28]. A basic
methodology to efficiently use memories in a NUMA system
is to store the data in the same location as the processor that
frequently references the data. In [26], the migration of the
pages between nodes is performed by using the characteristic
that the memory access pattern repeatedly appears in appli-
cations. In [29], a sampling-based approach is used in which
pages with excessive remote references are migrated to nodes
close to the accessing core. The system continuously samples
the excess miss counters to produce a list of candidate pages
for migration and replication.

We propose a dynamic memory management methodol-
ogy using the roofline model, the key contribution of our
work is the algorithm that efficiently uses different types of
memories in HPC systems without any hardware or software
modifications. Although our proposed HyDM targets the Intel
KNL processor in this paper, adopting the methodology to the
systems employing hybrid memories is possible.

VI. CONCLUSION

The hybrid memory is a promising memory technology for
future HPC systems. However, effective use of the system
is becoming increasingly difficult as the HPC environment
is diversifying. In this paper, we proposed a dynamic data
migration strategy using the roofline performance model called
HyDM. HyDM uses a hardware monitoring tool to observe
the status of programs running on the system and perform
migration based on the collected data. Also, a feedback mech-
anism is implemented for the case where the total memory
usage used for the programs is larger than the size of the
high bandwidth memory. Experiments using a real system,
including the Intel KNL processor, we demonstrate that the
proposed HyDM improves system performance.
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