Convex Function
Convex FunctionConvex 함수는 2차함수 처럼 볼록하게 생긴 함수를 말한다. 단순히 모양을 칭하는 말이지만 이것은 Gradient Descent에서는 꽤나 중요하게 작용한다. Convex Function Non Convex Function Gradient Descent 알고리즘에서 최소값을 구하기 위해서 미분이 0이 되는 지점을 찾는다.
Convex FunctionConvex 함수는 2차함수 처럼 볼록하게 생긴 함수를 말한다. 단순히 모양을 칭하는 말이지만 이것은 Gradient Descent에서는 꽤나 중요하게 작용한다. Convex Function Non Convex Function Gradient Descent 알고리즘에서 최소값을 구하기 위해서 미분이 0이 되는 지점을 찾는다.
Logistic Regression의 필요성 및 Linear Regression의 한계 Linear Regression은 일반적으로 결과인 y값이 연속적인 값을 가질때 데이터르 표현하기에 유용하다. 그러나 만약 y값이 이산적이라면 어떨까. 두번째 그래프는 y값이 붉은색과 푸른색으로 2가지 형태만 가지고 있다. 합격과 불합격을 의미하도록 만들었다. 데이터가
Hypothesis 확장y = wx + bSimple Linear Regression은 입력되어질 수 있는 변수가 x 한가지이다. 보다 복잡한 상황들을 견뎌낼 수 있는 모델이 필요하다. 이번에는 변수를 2개 이상 가질 수 있는 Linear Regression을 소개한다. y = w_2x_2 + w_1x_1 + b이는 변수 2개를 가질 수 있는 모델이며 같은
선형 회귀 이론의 확장.기존의 선형회귀 이론은 Hypothesis 모델이 y = wx 로 구하려고 하는 변수가 w값 1개 였다.그러나 실제로 이렇게 단순한 모델로 적용할 수 있는 상황은 그렇게 많지 않다. 이번에는 생략했던 b값도 추가하여 y = wx + b 의 모델로 선형 회귀 이론에 대해서 알아보자. Hypothesis개념은 Linear Regressi
Learning rate 란?w_{n+1} = w_n - \alpha { \partial \over \partial w} Cost Function 위 수식과 그래프는 Gradient Descent 알고리즘을 표현한다. 그래프에서 빨간 점은 반복됨에 따라서 점점 최소값을 향해 가고 있다. 위 수식에서 alpha는 learning rate라고 불리며 학습을
What is the linkear regression theory?Regression theory is widely used in Computer Science nowadays. The main feature of this theory is this theory use the mathmatical function expression to predict f
What is Conventional Programming ?It’s the normal programming way. Developer should define all of the cases that client do. Everythings is dependent on the developer. when you see the program, many pr
Let’s know default way how use flex attribute in css 1. Default settingFirstly, we sould create the html code for testing. flex.html1234567891011121314<html> <head> </head>
1. Decide categories of which you want.I will divide my posts to two parts. first is Jekyll and the last thing is React 1Think the way how to divide your posts 2. modify your _config.yml fileadd the